Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 15(12): e18710, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969101

RESUMEN

Aerosol transmission remains a major challenge for the control of respiratory viruses. To date, prevention strategies include masks, vaccinations, physical distancing, travel restrictions, and lockdowns. Such measures are effective but come with heavy societal burdens and rely on public compliance. Additionally, most are simply not suitable as long-term measures. Other strategies evolve around the concept of improved indoor air quality and involve ventilation, relative humidity (RH) control, and air filtration. Unfortunately, natural ventilation increases exposure to airborne pollutants and vector-borne diseases, and incurs substantial energy losses in colder months. Mechanical ventilation concepts, including regular air changes and filtration, are effective but costly, and often require expensive engineering solutions and widespread renovations. Alternative options to reduce the spread of emerging and seasonal infections are sorely needed. In this issue of EMBO Molecular Medicine, Styles et al (2023) describe the use of propylene glycol (PG) to inactivate infectious bioaerosols and virus-containing droplets deposited on surfaces.


Asunto(s)
Contaminación del Aire Interior , Enfermedades Transmisibles , Humanos , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Ventilación , Antivirales
2.
J Virol ; 97(10): e0127123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819131

RESUMEN

IMPORTANCE: The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Moco , Neuraminidasa , Animales , Humanos , Aves , Virus de la Influenza A/metabolismo , Moco/metabolismo , Neuraminidasa/metabolismo , Sistema Respiratorio/metabolismo
3.
mSphere ; 8(5): e0022623, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37594288

RESUMEN

Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/fisiología , Aerosoles y Gotitas Respiratorias , Concentración de Iones de Hidrógeno
5.
Environ Sci Technol ; 57(1): 486-497, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537693

RESUMEN

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles y Gotitas Respiratorias , Humanos , Concentración de Iones de Hidrógeno , SARS-CoV-2 , Inactivación de Virus , Transmisión de Enfermedad Infecciosa
6.
mBio ; 13(5): e0236722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125268

RESUMEN

Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development. IMPORTANCE The target pathogen of this study, Streptococcus pneumoniae, kills over 300,000 children <5 years of age every single year, and is the leading cause of pneumonia-associated mortality globally. While the capsular polysaccharide (CPS)-based vaccine Prevnar13 prevents serious illness caused by 13 serotypes, ongoing Prevnar13 use has driven the emergence of nonincluded serotypes as major causes of infection and disease. To overcome this issue, we have developed a next-generation pneumococcal vaccine conferring serotype-independent protection. This vaccine shows equivalent or superior efficacy to Prevnar13, and performance was heightened when our vaccine was administered with no adjuvant. These findings should be considered for similar vaccines in development, as the benefit of adjuvant is often assumed and its automatic inclusion may be limiting product efficacy, resulting in potential abandonment of viable vaccine candidates, or prolonging their time to clinic.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Ratones , Conejos , Animales , Vacunas Neumococicas , Streptococcus pneumoniae , Vacunas Conjugadas , Serogrupo , Infecciones Neumocócicas/prevención & control
8.
Front Immunol ; 12: 626199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326833

RESUMEN

Crosstalk between T and B cells is crucial for generating high-affinity, class-switched antibody responses. The roles of CD4+ T cells in this process have been well-characterised. In contrast, regulation of antibody responses by CD8+ T cells is significantly less defined. CD8+ T cells are principally recognised for eliciting cytotoxic responses in peripheral tissues and forming protective memory. However, recent findings have identified a novel population of effector CD8+ T cells that co-opt a differentiation program characteristic of CD4+ T follicular helper (Tfh) cells, upregulate the chemokine receptor CXCR5 and localise to B cell follicles. While it has been shown that CXCR5+CD8+ T cells mediate the removal of viral reservoirs in the context of follicular-trophic viral infections and maintain the response to chronic insults by virtue of progenitor/stem-like properties, it is not known if CXCR5+CD8+ T cells arise during acute peripheral challenges in the absence of follicular infection and whether they influence B cell responses in vivo in these settings. Using the ovalbumin-specific T cell receptor transgenic (OT-I) system in an adoptive transfer-immunisation/infection model, this study demonstrates that CXCR5+CD8+ T cells arise in response to protein immunisation and peripheral viral infection, displaying a follicular-homing phenotype, expression of cell surface molecules associated with Tfh cells and limited cytotoxic potential. Furthermore, studies assessing the B cell response in the presence of OT-I or Cxcr5-/- OT-I cells revealed that CXCR5+CD8+ T cells shape the antibody response to protein immunisation and peripheral viral infection, promoting class switching to IgG2c in responding B cells. Overall, the results highlight a novel contribution of CD8+ T cells to antibody responses, expanding the functionality of the adaptive immune system.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores CXCR5/metabolismo , Animales , Formación de Anticuerpos , Humanos , Inmunización , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/inmunología , Receptores CXCR5/genética
9.
J Radiat Res ; 61(6): 886-894, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32930781

RESUMEN

In recent years there has been increasing advocacy for highly immunogenic gamma-irradiated vaccines, several of which are currently in clinical or pre-clinical trials. Importantly, various methods of mathematical modelling and sterility testing are employed to ensure sterility. However, these methods are designed for materials with a low bioburden, such as food and pharmaceuticals. Consequently, current methods may not be reliable or applicable to estimate the irradiation dose required to sterilize microbiological preparations for vaccine purposes, where bioburden is deliberately high. In this study we investigated the applicability of current methods to calculate the sterilizing doses for different microbes. We generated inactivation curves that demonstrate single-hit and multiple-hit kinetics under different irradiation temperatures for high-titre preparations of pathogens with different genomic structures. Our data demonstrate that inactivation of viruses such as Influenza A virus, Zika virus, Semliki Forest virus and Newcastle Disease virus show single-hit kinetics following exposure to gamma-irradiation. In contrast, rotavirus inactivation shows multiple-hit kinetics and the sterilizing dose could not be calculated using current mathematical methods. Similarly, Streptococcus pneumoniae demonstrates multiple-hit kinetics. These variations in killing curves reveal an important gap in current mathematical formulae to determine sterility assurance levels. Here we propose a simple method to calculate the irradiation dose required for a single log10 reduction in bioburden (D10) value and sterilizing doses, incorporating both single- and multiple-hit kinetics, and taking into account the possible existence of a resistance shoulder for some pathogens following exposure to gamma-irradiation.


Asunto(s)
Rayos gamma , Modelos Teóricos , Dosis de Radiación , Esterilización/métodos , Animales , Chlorocebus aethiops , Perros , Relación Dosis-Respuesta en la Radiación , Cinética , Streptococcus pneumoniae , Temperatura , Células Vero , Virus Zika/efectos de la radiación , Infección por el Virus Zika/prevención & control
10.
Commun Biol ; 3(1): 293, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504007

RESUMEN

Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes.


Asunto(s)
Interacción Gen-Ambiente , Interacciones Huésped-Patógeno/genética , Infiltración Neutrófila , Infecciones Neumocócicas/genética , Streptococcus pneumoniae/genética , Transcriptoma , Tropismo , Animales , Metabolismo de los Hidratos de Carbono , Femenino , Regulación de la Expresión Génica , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Infecciones Neumocócicas/microbiología , RNA-Seq , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/patogenicidad , Virulencia
11.
Nat Microbiol ; 4(8): 1316-1327, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110357

RESUMEN

The upper respiratory tract is continuously exposed to a vast array of potentially pathogenic viruses and bacteria. Influenza A virus (IAV) has particular synergism with the commensal bacterium Streptococcus pneumoniae in this niche, and co-infection exacerbates pathogenicity and causes significant mortality. However, it is not known whether this synergism is associated with a direct interaction between the two pathogens. We have previously reported that co-administration of a whole-inactivated IAV vaccine (γ-Flu) with a whole-inactivated pneumococcal vaccine (γ-PN) enhances pneumococcal-specific responses. In this study, we show that mucosal co-administration of γ-Flu and γ-PN similarly augments IAV-specific immunity, particularly tissue-resident memory cell responses in the lung. In addition, our in vitro analysis revealed that S. pneumoniae directly interacts with both γ-Flu and with live IAV, facilitating increased uptake by macrophages as well as increased infection of epithelial cells by IAV. These observations provide an additional explanation for the synergistic pathogenicity of IAV and S. pneumoniae, as well as heralding the prospect of exploiting the phenomenon to develop better vaccine strategies for both pathogens.


Asunto(s)
Inmunidad , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Vacunas Neumococicas/inmunología , Animales , Coinfección/inmunología , Coinfección/prevención & control , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Células Epiteliales , Femenino , Humanos , Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Pulmón/inmunología , Macrófagos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae/patogenicidad , Linfocitos T/inmunología
12.
Immunol Cell Biol ; 97(8): 726-739, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31050022

RESUMEN

Existing capsular polysaccharide-based vaccines against pneumococcal disease are highly effective against vaccine-included serotypes, but they are unable to combat serotype replacement. We have developed a novel pneumococcal vaccine that confers serotype-independent protection, and could therefore constitute a "universal" vaccine formulation. This preparation is comprised of whole un-encapsulated pneumococci inactivated with gamma irradiation (γ-PN), and we have previously reported induction of cross-reactive immunity after nonadjuvanted intranasal vaccination. To further enhance vaccine immunogenicity and safety, we modified the pneumococcal vaccine strain to induce a stressed state during growth. Specifically, the substrate binding component of the psaBCA operon for manganese import was mutated to create a pneumococcal surface antigen A (psaA) defective vaccine strain. psaA mutation severely attenuated the growth of the vaccine strain in vitro without negatively affecting pneumococcal morphology, thereby enhancing vaccine safety. In addition, antibodies raised against vaccine preparations based on the modified strain [γ-PN(ΔPsaA)] showed more diversified reactivity to wild-type pneumococcal challenge strains compared to those induced by the original formulation. The modified vaccine also induced comparable protective TH 17 responses in the lung, and conferred greater protection against lethal heterologous pneumococcal challenge. Overall, the current study demonstrates successful refinement of a serotype-independent pneumococcal vaccine candidate to enhance safety and immunogenicity.


Asunto(s)
Adhesinas Bacterianas/inmunología , Lipoproteínas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Adhesinas Bacterianas/genética , Administración Intranasal , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Inmunogenicidad Vacunal , Lipoproteínas/genética , Pulmón/citología , Pulmón/inmunología , Ratones , Mutación , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/efectos adversos , Vacunas Neumococicas/genética , Streptococcus pneumoniae/genética , Células Th17/inmunología , Vacunación/métodos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología
13.
PLoS One ; 13(6): e0198182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29879130

RESUMEN

Rotavirus (RV) causes significant morbidity and mortality in developing countries, where children and infants are highly susceptible to severe disease symptoms. While live attenuated vaccines are available, reduced vaccine efficacy in developing countries illustrates the need for highly immunogenic alternative vaccines. Here, we studied the possible inactivation of RV using gamma(γ)-irradiation, and assessed the sterility and immunogenicity of γ-irradiated RV (γ-RV) as a novel vaccine candidate. Interestingly, the inactivation curve of RV did not show a log-linear regression following exposure to increased doses of γ-rays, and consequently the radiation dose required to achieve the internationally accepted Sterility Assurance Level could not be calculated. Nonetheless, we performed sterility testing based on serial passages of γ-RV, and our data clearly illustrate the lack of infectivity of γ-RV preparations irradiated with 50 kGy. In addition, we tested the immunogenicity of 50 kGy γ-RV in mice and our data illustrate the induction of strong RV-specific neutralising antibody responses following administration of γ-RV without using adjuvant. Therefore, whilst γ-RV may not constitute a replacement for current RV vaccines, this study represents a proof-of-concept that γ-irradiation can be applied to inactivate RV for vaccine purposes. Further investigation will be required to address whether γ-irradiation can be applied to improve safety and efficacy of existing live attenuated vaccines.


Asunto(s)
Rayos gamma , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus , Rotavirus/efectos de la radiación , Vacunas de Productos Inactivados , Inactivación de Virus/efectos de la radiación , Animales , Células Cultivadas , Chlorocebus aethiops , Femenino , Inmunogenicidad Vacunal/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Infecciones por Rotavirus/inmunología , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/uso terapéutico , Vacunas de Productos Inactivados/uso terapéutico , Células Vero
14.
Vaccine ; 35(7): 1071-1079, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28109709

RESUMEN

Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Vacunas contra la Influenza/efectos de la radiación , Infecciones por Orthomyxoviridae/prevención & control , Linfocitos T Citotóxicos/inmunología , Vacunación , Administración Intranasal , Animales , Perros , Relación Dosis-Respuesta Inmunológica , Relación Dosis-Respuesta en la Radiación , Femenino , Rayos gamma , Esquemas de Inmunización , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Análisis de Supervivencia , Linfocitos T Citotóxicos/virología , Potencia de la Vacuna , Vacunas de Productos Inactivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...